01 August, 2020
Virtual Amazon-Web-Services MLS-C01 Free Practice Test Online
It is more faster and easier to pass the Amazon-Web-Services MLS-C01 exam by using Refined Amazon-Web-Services AWS Certified Machine Learning - Specialty questuins and answers. Immediate access to the Improved MLS-C01 Exam and find the same core area MLS-C01 questions with professionally verified answers, then PASS your exam with a high score now.
Amazon-Web-Services MLS-C01 Free Dumps Questions Online, Read and Test Now.
Question 1
A Machine Learning Specialist is configuring Amazon SageMaker so multiple Data Scientists can access notebooks, train models, and deploy endpoints. To ensure the best operational performance, the Specialist needs to be able to track how often the Scientists are deploying models, GPU and CPU utilization on the deployed SageMaker endpoints, and all errors that are generated when an endpoint is invoked.
Which services are integrated with Amazon SageMaker to track this information? (Select TWO.)
Which services are integrated with Amazon SageMaker to track this information? (Select TWO.)
Question 2
An office security agency conducted a successful pilot using 100 cameras installed at key locations within the main office. Images from the cameras were uploaded to Amazon S3 and tagged using Amazon Rekognition, and the results were stored in Amazon ES. The agency is now looking to expand the pilot into a full production system using thousands of video cameras in its office locations globally. The goal is to identify activities performed by non-employees in real time.
Which solution should the agency consider?
Which solution should the agency consider?
Question 3
A Machine Learning Specialist built an image classification deep learning model. However the Specialist ran into an overfitting problem in which the training and testing accuracies were 99% and 75%r respectively.
How should the Specialist address this issue and what is the reason behind it?
How should the Specialist address this issue and what is the reason behind it?
Question 4
A Machine Learning Specialist is packaging a custom ResNet model into a Docker container so the company can leverage Amazon SageMaker for training The Specialist is using Amazon EC2 P3 instances to train the model and needs to properly configure the Docker container to leverage the NVIDIA GPUs
What does the Specialist need to do1?
What does the Specialist need to do1?
Question 5
While working on a neural network project, a Machine Learning Specialist discovers thai some features in the data have very high magnitude resulting in this data being weighted more in the cost function What should the Specialist do to ensure better convergence during backpropagation?
Question 6
A Machine Learning Specialist is preparing data for training on Amazon SageMaker The Specialist is transformed into a numpy .array, which appears to be negatively affecting the speed of the training
What should the Specialist do to optimize the data for training on SageMaker'?
What should the Specialist do to optimize the data for training on SageMaker'?
Question 7
A Machine Learning Specialist is building a model that will perform time series forecasting using Amazon SageMaker The Specialist has finished training the model and is now planning to perform load testing on the endpoint so they can configure Auto Scaling for the model variant
Which approach will allow the Specialist to review the latency, memory utilization, and CPU utilization during the load test"?
Which approach will allow the Specialist to review the latency, memory utilization, and CPU utilization during the load test"?
Question 8
A Machine Learning Specialist was given a dataset consisting of unlabeled data The Specialist must create a model that can help the team classify the data into different buckets What model should be used to complete this work?
Question 9
A Data Science team is designing a dataset repository where it will store a large amount of training data commonly used in its machine learning models. As Data Scientists may create an arbitrary number of new datasets every day the solution has to scale automatically and be cost-effective. Also, it must be possible to explore the data using SQL.
Which storage scheme is MOST adapted to this scenario?
Which storage scheme is MOST adapted to this scenario?
Question 10
A monitoring service generates 1 TB of scale metrics record data every minute A Research team performs queries on this data using Amazon Athena The queries run slowly due to the large volume of data, and the team requires better performance
How should the records be stored in Amazon S3 to improve query performance?
How should the records be stored in Amazon S3 to improve query performance?
Question 11
A Machine Learning Specialist is developing a daily ETL workflow containing multiple ETL jobs The workflow consists of the following processes
* Start the workflow as soon as data is uploaded to Amazon S3
* When all the datasets are available in Amazon S3, start an ETL job to join the uploaded datasets with multiple terabyte-sized datasets already stored in Amazon S3
* Store the results of joining datasets in Amazon S3
* If one of the jobs fails, send a notification to the Administrator Which configuration will meet these requirements?
* Start the workflow as soon as data is uploaded to Amazon S3
* When all the datasets are available in Amazon S3, start an ETL job to join the uploaded datasets with multiple terabyte-sized datasets already stored in Amazon S3
* Store the results of joining datasets in Amazon S3
* If one of the jobs fails, send a notification to the Administrator Which configuration will meet these requirements?
Question 12
A Machine Learning Specialist has built a model using Amazon SageMaker built-in algorithms and is not getting expected accurate results The Specialist wants to use hyperparameter optimization to increase the model's accuracy
Which method is the MOST repeatable and requires the LEAST amount of effort to achieve this?
Which method is the MOST repeatable and requires the LEAST amount of effort to achieve this?
Question 13
A manufacturing company has structured and unstructured data stored in an Amazon S3 bucket. A Machine Learning Specialist wants to use SQL to run queries on this data.
Which solution requires the LEAST effort to be able to query this data?
Which solution requires the LEAST effort to be able to query this data?
Question 14
A Data Engineer needs to build a model using a dataset containing customer credit card information.
How can the Data Engineer ensure the data remains encrypted and the credit card information is secure? Use a custom encryption algorithm to encrypt the data and store the data on an Amazon SageMaker instance in a VPC. Use the SageMaker DeepAR algorithm to randomize the credit card numbers.
How can the Data Engineer ensure the data remains encrypted and the credit card information is secure? Use a custom encryption algorithm to encrypt the data and store the data on an Amazon SageMaker instance in a VPC. Use the SageMaker DeepAR algorithm to randomize the credit card numbers.
Question 15
A Machine Learning Specialist wants to determine the appropriate SageMakerVariant Invocations Per Instance setting for an endpoint automatic scaling configuration. The Specialist has performed a load test on a single instance and determined that peak requests per second (RPS) without service degradation is about 20 RPS As this is the first deployment, the Specialist intends to set the invocation safety factor to 0 5
Based on the stated parameters and given that the invocations per instance setting is measured on a per-minute basis, what should the Specialist set as the sageMakervariantinvocationsPerinstance setting?
Based on the stated parameters and given that the invocations per instance setting is measured on a per-minute basis, what should the Specialist set as the sageMakervariantinvocationsPerinstance setting?
Question 16
A Machine Learning Specialist must build out a process to query a dataset on Amazon S3 using Amazon Athena The dataset contains more than 800.000 records stored as plaintext CSV files Each record contains 200 columns and is approximately 1 5 MB in size Most queries will span 5 to 10 columns only
How should the Machine Learning Specialist transform the dataset to minimize query runtime?
How should the Machine Learning Specialist transform the dataset to minimize query runtime?
Question 17
A Machine Learning Specialist is building a prediction model for a large number of features using linear models, such as linear regression and logistic regression During exploratory data analysis the Specialist observes that many features are highly correlated with each other This may make the model unstable
What should be done to reduce the impact of having such a large number of features?
What should be done to reduce the impact of having such a large number of features?
Question 18
A Machine Learning Specialist is working with a large cybersecurily company that manages security events in real time for companies around the world The cybersecurity company wants to design a solution that will allow it to use machine learning to score malicious events as anomalies on the data as it is being ingested The company also wants be able to save the results in its data lake for later processing and analysis
What is the MOST efficient way to accomplish these tasks'?
What is the MOST efficient way to accomplish these tasks'?
Question 19
For the given confusion matrix, what is the recall and precision of the model?
Question 20
An Machine Learning Specialist discover the following statistics while experimenting on a model.
What can the Specialist from the experiments?
What can the Specialist from the experiments?
Question 21
An e-commerce company needs a customized training model to classify images of its shirts and pants products The company needs a proof of concept in 2 to 3 days with good accuracy Which compute choice should the Machine Learning Specialist select to train and achieve good accuracy on the model quickly?
Question 22
A Machine Learning Specialist is designing a system for improving sales for a company. The objective is to use the large amount of information the company has on users' behavior and product preferences to predict which products users would like based on the users' similarity to other users.
What should the Specialist do to meet this objective?
What should the Specialist do to meet this objective?
Question 23
A Machine Learning Specialist is working with a large company to leverage machine learning within its products. The company wants to group its customers into categories based on which customers will and will not churn within the next 6 months. The company has labeled the data available to the Specialist.
Which machine learning model type should the Specialist use to accomplish this task?
Which machine learning model type should the Specialist use to accomplish this task?
Question 24
An insurance company is developing a new device for vehicles that uses a camera to observe drivers' behavior and alert them when they appear distracted The company created approximately 10,000 training images in a controlled environment that a Machine Learning Specialist will use to train and evaluate machine learning models
During the model evaluation the Specialist notices that the training error rate diminishes faster as the number of epochs increases and the model is not accurately inferring on the unseen test images
Which of the following should be used to resolve this issue? (Select TWO)
During the model evaluation the Specialist notices that the training error rate diminishes faster as the number of epochs increases and the model is not accurately inferring on the unseen test images
Which of the following should be used to resolve this issue? (Select TWO)